About: Imagerie mathématique : segmentation sous contraintes géométriques, théorie et applications   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Thesis advisor
Author
dc:subject
  • Reconstruction d'image
  • Thèses et écrits académiques
  • Traitement d'images -- Techniques numériques
  • Imagerie tridimensionnelle
preferred label
  • Imagerie mathématique : segmentation sous contraintes géométriques, théorie et applications
Language
Subject
dc:title
  • Imagerie mathématique : segmentation sous contraintes géométriques, théorie et applications
Degree granting institution
note
  • Dans cette thèse, nous nous sommes intéressés à des problèmes de segmentation d'images sous contraintes géométriques. Cette problématique a émergé suite à l'analyse de plusieurs méthodes classiques de détection de contours qui a été faite. En effet, ces méthodes classiques (Modèles déformables, contours actifs géodésiques, \"fast marching\", etc...) se révèlent caduques quand des données de l'image sont manquantes ou de mauvaise qualité. En imagerie médicale par exemple, des phénomènes d'occlusion peuvent se produire : des organes peuvent se masquer en partie l'un l'autre (ex. du foie). Par ailleurs, deux objets qui se jouxtent peuvent posséder des textures intrinsèques homogènes si bien qu'il est difficile d'identifier clairement l'interface entre ces deux objets. La définition classique d'un contour qui est caractérisé comme étant le lieu des points connexes présentant une forte transition de luminosité ne s'applique donc plus. Enfin, dans certains contextes d'étude, comme en géophysique, on peut disposer en plus des données d'imagerie, de données géométriques à intégrer au processus de segmentation. Pour pallier ces difficultés, nous avons développé des modèles de segmentation intégrant des contraintes géométriques et satisfaisant les critères classiques de détection avec en particulier la régularité sur le contour que cela implique. Deux méthodes ont été développées. Dans la première (qui permet d'établir un problème d'interpolation), on s'attache à définir un problème de minimisation de fonctionnelle sur un espace de Hilbert. L'introduction des contraintes géométriques conduit à résoudre ce problème sur un sous-espace vectoriel fermé d'un espace de Hilbert. L'utilisation des multiplicateurs de Lagrange nous permet d'établir la formulation variationnelle du problème qui est ensuite discrétisé à l'aide d'une méthode différences finies pour la discrétisation temporelle et via une méthode e��léments finis pour la discrétisation spatiale. Des applications numériques viennent se greffer sur cette première partie. Un second modèle a été élaboré et s'appuie sur la recherche d'une courbe géodésique dans un espace de Riemann dont la métrique est liée à la fois au contenu de l'image et aux contraintes géométriques. Il s'agit ici d'un problème d'approximation et non plus d'interpolation. Un problème parabolique avec conditions au bord de type Neumann homogènes est établi. L'existence et l'unicité de la solution au sens de la viscosité est démontrée. La discrétisation est réalisée via un schéma AOS qui présente l'intérêt d'être inconditionnellement stable. Des applications sur des données réelles attestent de la bonne efficacité de l'algorithme.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2004
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software