Attributes | Values |
---|
type
| |
Thesis advisor
| |
Praeses
| |
Author
| |
alternative label
| - Behavioral reprogramming, models, algorithms and application to complex diseases
|
dc:subject
| - Thèses et écrits académiques
- Fonctions booléennes
- Abduction (logique)
- Maladies -- Modèles mathématiques
- Maladies complexes
- Reprogrammation comportementale
- Réseaux booléens controlés
|
preferred label
| - Reprogrammation comportementale, modèles, algorithmes et application aux maladies complexes
|
Language
| |
Subject
| |
dc:title
| - Reprogrammation comportementale, modèles, algorithmes et application aux maladies complexes
|
Degree granting institution
| |
Opponent
| |
note
| - Les maladies complexes comme le Cancer et la maladie d'Alzheimer sont causées par des perturbations moléculaires multiples responsables d'un comportement cellulaire pathologique.Un enjeu majeur de la médecine de précision est l'identification des perturbations moléculaires induites par les maladies complexes et les thérapies à partir de leurs conséquences sur les phénotypes cellulaire.Nous définissons un modèle des maladies complexes,appelé la reprogrammation comportementale,assimilant les perturbations moléculaires à des altérations des fonctions dynamiques locales de systèmes dynamiques discrets induisant une reprogrammation de la dynamique globale du réseau. Ce cadre de modélisation s'appuie d'une part, sur les réseaux Booléens contrôlés, qui sont des réseaux Booléens dans lesquels sont insérés des paramètres de contrôle modélisant les perturbations et, d'autre part, sur la définition de modes (Possibilité, Nécessité) permettant d'exprimer les objectifs de cette reprogrammation.A partir de ce cadre, nous démontrons que le calcul des noyaux, i.e., des ensembles minimaux d'actions permettant la reprogrammation selon un mode s'exprime comme un problème d'inférence abductive en logique propositionnelle. En nous appuyant sur les méthodes historiques de calcul d'impliquants premiers des fonctions Booléennes,nous développons deux méthodes permettant le calcul exhaustif des noyaux de la reprogrammation. Enfin, nous évaluons la pertinence du cadre de modélisation pour l'identification des perturbations responsables de la transformation d'une cellule saine en cellule cancéreuse et la découverte de cibles thérapeutiques sur un modèle du cancer du sein. Nous montrons notamment que les perturbations inférées par nos méthodes sont compatibles avec la connaissance biologique en discriminant les oncogènes des gènes suppresseurs de tumeurs et en récupérant la mutation du gène BRCA1. De plus, la méthode récupère le phénomène de létalité synthétique entre PARP1 et BRCA1, qui constitue un traitement anticancéreux optimal car il cible spécifiquement les cellules tumorales.
- Complex diseases such as cancer and Alzheimer's are caused by multiple molecular perturbations responsible for pathological cellular behavior. A major challenge of precision medicine is the identification of the molecular perturbations induced by the disease and the therapies from their consequences on cell phenotypes. We define a model of complex diseases, called behavioral reprogramming, that assimilates the molecular perturbations to alterations of the dynamic local functions of discrete dynamical systems inducing a reprogramming of the global dynamics of the network. This modeling framework relies on the one hand, on Control Boolean networks, which are Boolean networks containing control parameters modeling the perturbations and, on the other hand, the definition of reprogramming modes (Possibility, Necessity) expressing the objective of the behavioral reprogramming. From this framework, we demonstrate that the computation of the cores, namely, the minimal sets of action allowing reprogramming is a problem of abductive inference in propositional logic. Using historical methods computing the prime implicants of Boolean functions, we develop two methods computing all the reprogramming cores.Finally, we evaluate the modeling framework for the identification of perturbations responsible for the transformation of a healthy cell into a cancercell and the discovery of therapeutic targets ona model of breast cancer. In particular, we showthat the perturbations inferred by our methods a recompatible with biological knowledge by discriminating oncogenes and tumor suppressor genes and by recovering the causal of the BRCA1 gene. In addition, the method recovers the synthetic lethality phenomenon between PARP1 and BRCA1 that constitutes an optimal anti-cancer treatment because it specifically targets tumor cells.
|
dc:type
| |
http://iflastandar...bd/elements/P1001
| |
rdaw:P10219
| |
has content type
| |
is primary topic
of | |
is rdam:P30135
of | |