note
| - To a unitary irreducible representation (π,H) of a Lie group G, is associated a moment map Ψπ. The closure of the range of Ψπ is the moment set of π. Generally, this set is Conv(Oπ), if Oπ is the corresponding coadjoint orbit. Unfortunately, it does not characterize π : 2 distincts orbits can have the same closed convex hull. We can overpass this di culty, by considering an overgroup G+ for G and a non linear map ø from g* into (g+)* such that, for generic orbits, ø(O) is an orbit and Conv( ø(O)) characterizes O. In the present thesis, we show that we can choose the pair (G+,ø), with deg ø ≤2 for all the nilpotent groups with dimension ≤6, except one, for all solvable groups with diemnsion ≤4, and for an example of motion group. Then we study the G=SL(n,R) case. For these groups, there exists ø with deg ø =n, if n>2, there is no such ø with deg ø=2, if n=4, there is no such ø with deg ø=3. Finally, we show that the moment map Ψπ is coming from a stronly Hamiltonian G-action on the Frécht symplectic manifold PH∞. We build a functor, which associates to each G an infi nite diemnsional Fréchet-Lie overgroup G̃,and, to each π a strongly Hamiltonian action, whose moment set characterizes π
- Si (π, H) est une représentation unitaire irréductible d'un groupe de Lie G, on sait lui associer son application moment Ψπ. La fermeture de l'image de Ψπ s'appelle l'ensemble moment de π. Généralement, cet ensemble est Conv(Oπ), si Oπ est l'orbite coadjointe associée à π. Mais il ne caractérise pas π : deux orbites distinctes peuvent avoir la même enveloppe convexe fermée. On peut contourner cette non séparation en considérant un surgroupe G+ de G et une application non linéaire ø de g* dans (g+)* telle que, pour les orbites générique, ø(O) est une orbite et Conv (ø(O)) caractérise O. Dans cette thèse, on montre que l'on peut choisir le couple (G+, ø), avec ø de degré ≤ 2 pour tous les groupes nilpotents de dimension ≤ 6, à une exception près, tous les groupes résolubles de dimension ≤ 4, et pour un exemple de groupe de déplacements. Ensuite, on étudie le cas des groupes G = SL(n, R). Pour ces groupes, il existe un tel couple avec ø de degré n, mais il n'en existe pas avec ø de degré 2 si n>2, il n'en existe pas avec ø de degré 3 si n=4. Enfin, on montre que l'application moment Ψπ est celle d'une action fortement hamiltonienne de G sur la variété de Fréchet symplectique PH∞. On construit un foncteur qui associe à tout G un surgroupe de Lie Fréchet G̃, de dimension infinie et, à tout π de G, une action π̃ fortement hamiltonienne, dont l'ensemble moment caractérise π
|