About: Stochastic recursive algorithms for optimization, simultaneous perturbation methods   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Author
alternative label
  • Stochastic Recursive Algorithms for Optimization
dc:subject
  • Engineering
  • Algorithmes
  • Mathematical optimization
  • Optimisation mathématique
  • System theory
  • Systems theory
  • Control and Systems Theory.
  • Control engineering
  • Calculus of variations
  • Control theory
  • Systems Theory, Control.
  • Calculus of Variations and Optimal Control; Optimization.
  • Approximation stochastique
  • Stochastic approximation
  • Calculus of Variations and Optimization
preferred label
  • Stochastic recursive algorithms for optimization, simultaneous perturbation methods
Language
Subject
dc:title
  • Stochastic recursive algorithms for optimization, simultaneous perturbation methods
note
  • Stochastic Recursive Algorithms for Optimization presents algorithms for constrained and unconstrained optimization and for reinforcement learning. Efficient perturbation approaches form a thread unifying all the algorithms considered. Simultaneous perturbation stochastic approximation and smooth fractional estimators for gradient- and Hessian-based methods are presented. These algorithms: • are easily implemented; • do not require an explicit system model; and • work with real or simulated data. Chapters on their application in service systems, vehicular traffic control and communications networks illustrate this point. The book is self-contained with necessary mathematical results placed in an appendix. The text provides easy-to-use, off-the-shelf algorithms that are given detailed mathematical treatment so the material presented will be of significant interest to practitioners, academic researchers and graduate students alike. The breadth of applications makes the book appropriate for reader from similarly diverse backgrounds: workers in relevant areas of computer science, control engineering, management science, applied mathematics, industrial engineering and operations research will find the content of value.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2013
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software