About: Algorithmique des courbes hyperelliptiques et applications à la cryptologie   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Author
dc:subject
  • Cryptanalyse
  • Thèses et écrits académiques
  • Cryptographie
  • Sciences et techniques
  • Telecommunications et theorie de l'information
  • Courbe elliptique
preferred label
  • Algorithmique des courbes hyperelliptiques et applications à la cryptologie
Language
Subject
dc:title
  • Algorithmique des courbes hyperelliptiques et applications à la cryptologie
note
  • L'ETUDE ALGORITHMIQUE DES COURBES HYPERELLIPTIQUES EST LA SUITE NATURELLE DE CELLE DES COURBES ELLIPTIQUES QUI EST MAINTENANT BIEN AVANCEE. LA PLUPART DES ALGORITHMES CONNUS POUR LES COURBES ELLIPTIQUES AINSI QUE LEURS APPLICATIONS A LA CRYPTOGRAPHIE PEUVENT ETRE ETENDUS PLUS OU MOINS FACILEMENT AUX JACOBIENNES DE COURBES HYPERELLIPTIQUES. DANS UNE PREMIERE PARTIE, NOUS ETUDIONS CERTAINS ASPECTS DES INVARIANTS D'IGUSA, QUI GENERALISENT LE J-INVARIANT D'UNE COURBE ELLIPTIQUE. POUR LES JACOBIENNES (2,2)-DECOMPOSABLES, NOUS RELIONS LES INVARIANTS D'IGUSA AUX J-INVARIANTS DES COURBES ELLIPTIQUES QUOTIENTS PAR DES FORMULES EXPLICITES. PAR AILLEURS NOUS ETUDIONS CES INVARIANTS SOUS L'ANGLE DES FORMES MODULAIRES DE SIEGEL DANS LE BUT DE CALCULER DES EQUATIONS MODULAIRES. LA DEUXIEME PARTIE EST CONSACREE A DES ALGORITHMES DE CALCUL DE CARDINALITE D'UNE COURBE HYPERELLIPTIQUE SUR UN CORPS FINI. CE CALCUL EST UNE ETAPE NECESSAIRE LORSQUE L'ON DESIRE METTRE EN UVRE UN CRYPTOSYSTEME HYPERELLIPTIQUE. HORMIS LES ALGORITHMES GENERIQUES QUI PEUVENT S'APPLIQUER A DES GROUPES AUTRES QUE DES JACOBIENNES, NOUS PROPOSONS UNE VERSION EFFECTIVE DES ALGORITHMES A LA SCHOOF EN GENRE 2. NOUS PRESENTONS AUSSI UN PREMIER PAS VERS DES AMELIORATIONS DU TYPE ELKIES-ATKIN, QUI ONT FAIT LEUR PREUVE DANS LE CAS DES COURBES ELLIPTIQUES. LA TROISIEME PARTIE TRAITE D'ALGORITHMES DE CALCUL DE LOGARITHME DISCRET. CE PROBLEME EST LA CLEF DE VOUTE DES CRYPTOSYSTEMES : SI L'ON SAIT LE RESOUDRE EN TEMPS RAISONNABLE, LE SYSTEME EST FRAGILE. APRES UN BREF ETAT DE L'ART, NOUS PRESENTONS DES ALGORITHMES UTILISANT LES IDEES CLASSIQUES DE CALCUL D'INDEX. EN TIRANT PARTI DES SPECIFICITES DES PROBLEMES PROVENANT DE LA CRYPTOGRAPHIE, NOUS DEMONTRONS PAR DES RESULTATS DE COMPLEXITE AINSI QUE DES EXPERIENCES PRATIQUES QUE LES SYSTEMES A BASE DE COURBES DE GENRE SUPERIEUR OU EGAL A 4 NE SONT PAS SURS. DE PLUS, COMBINE AVEC LES TECHNIQUES DE DESCENTE DE WEIL, CECI PERMET D'ATTAQUER CERTAINS CRYPTOSYSTEMES ELLIPTIQUES.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2000
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software