About: Effet tunnel dans les systèmes complexes   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Thesis advisor
Author
alternative label
  • Tunnelling in complex systems
dc:subject
  • Thèses et écrits académiques
  • Effet tunnel
  • Mouvement rotatoire
  • Instantons
  • WKB, Approximation
  • Rotation de Wick
  • Temps complexe
  • Trajectoire complexe
preferred label
  • Effet tunnel dans les systèmes complexes
Language
Subject
dc:title
  • Effet tunnel dans les systèmes complexes
Degree granting institution
note
  • Les travaux présentés dans cette thèse s’inscrivent dans le cadre général de la description de l’effet tunnel dans la limite semi classique h → 0. Nous présentons une nouvelle méthode de calcul direct de la largeur des doublets tunnel. L’expression obtenue est basée sur l’utilisation de traces d’opérateurs quantiques, dont l’opérateur d’évolution Û (T)prolongé analytiquement à l’aide d’un temps complexe T. L’étape suivante consiste en un développement semi classique de ces traces. Nous nous plaçons dans le cadre des systèmes intégrables unidimensionnels afin d’insister sur l’importance d’un temps complexe et on montre que le choix d’un chemin du temps [t] adapté, lors du calcul semi classique des traces, fournit un critère de sélection efficace des trajectoires complexes dominantes. Nous verrons que cette approche retrouve la technique des instantons dans la limite d’un temps purement imaginaire et qu’elle permet d’inclure les descriptions, inaccessibles par une rotation de Wick complète, de l’effet tunnel dynamique et résonant. Nous montrons également comment adapter cette méthode au taux de transmission tunnel d’un état localisé dans un minimum local vers un continuum d’états. Enfin, nous proposerons, en guise de perspectives,d’étudier l’effet tunnel résonant à partir de modèles intégrables présentant des îlots stables entourés de chaînes de tores pour lesquels nous tenterons d’adapter la théorie de l’effet tunnel assisté par les résonances.
  • The present work is developed within the general framework of the description of the tunneling effect in the semiclassical limit h → 0. We introduce a new method for the direct computation of the tunneling splittings. We get a trace formula involving the evolution operator continued in the complex plane using a complex time T. The next step is to obtain semi classical expansion of these traces. Within the framework of one dimensionnalintegrable systems, we show the key role of a complex time. When performing semiclassical calculations, an appropriate complex-time paths provide an efficient criterion in order toselect the dominant complex trajectories involved in the traces. We will show that our approach includes instanton techniques in the limit of a purely imaginary time and describes dynamical tunneling and resonant tunneling for which a complete Wick is not sufficient.We will show also how our method works for the decay rates. Finally, as a perspective,we will study resonant tunneling from integrable models which exhibit prominent islands surrounded by chains of tori. From these models, we will try to apply the theory of resonant assisted tunneling to integrable systems.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2011
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software