About: Analyse mathématique de modèles de trafic routier congestionné   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Thesis advisor
Praeses
Author
alternative label
  • Mathematical analysis of models of congested road traffic
dc:subject
  • Théorie des jeux
  • Équations aux dérivées partielles
  • Thèses et écrits académiques
  • Optimisation mathématique
  • Éléments finis, Méthode des
  • Simulation par ordinateur
  • Simulations numériques
  • Équations différentielles dégénérées
  • Équations différentielles elliptiques
  • Convergence (mathématiques)
  • Monge-Ampère, Équations de
  • Finsler, Espaces de
  • Lagrangien augmenté
  • Embouteillages (circulation)
  • Problème de Monge
  • Conditions d'optimalité
  • Courbes généralisées
  • Distance de Finsler
  • EDPs anisotropiques et dégénérées
  • Gamma-Convergence
  • Mesure d'Young
  • Problème de Beckmann
  • Trafic congestionné
  • Équilibre de Wardrop
preferred label
  • Analyse mathématique de modèles de trafic routier congestionné
Language
Subject
dc:title
  • Analyse mathématique de modèles de trafic routier congestionné
Degree granting institution
Opponent
note
  • This thesis is devoted to the mathematical analysis of some models of congested road traffic. The essential notion is the Wardrop equilibrium. It continues Carlier and Santambrogio's works with coauthors. With Baillon they studied the case of two-dimensional cartesian networks that become very dense in the framework of Γ-convergence theory. Finding Wardrop equilibria is equivalent to solve convex minimisation problems. In Chapter 2 we look at what happens in the case of general networks, increasingly dense. New difficulties appear with respect to the original case of cartesian networks. To deal with these difficulties we introduce the concept of generalized curves. Structural assumptions on these sequences of discrete networks are necessary to obtain convergence. Sorts of Finsler distance are used and keep track of anisotropy of the network. We then have similar results to those in the cartesian case. In Chapter 3 we study the continuous model and in particular the limit problems. Then we find optimality conditions through a duale formulation that can be interpreted in terms of continuous Wardrop equilibria. However we work with generalized curves and we cannot directly apply Prokhorov's theorem, as in [Baillon and Carlier]. To use it we consider a relaxed version of the limit problem with Young's measures. In Chapter 4 we focus on the long-term case, that is, we fix only the distributions of supply and demand. As shown in [Brasco] the problem of Wardrop equilibria can be reformulated in a problem à la Beckmann and reduced to solve an elliptic anisotropic and degenerated PDE. We use the augmented Lagrangian scheme presented in [Benamou] to show a few numerical simulation examples. Finally Chapter 5 is devoted to studying Monge problems with as cost a Finsler distance. It leads to minimal flow problems. Discretization of these problems is equivalent to a saddle-point problem. We then solve it numerically again by an augmented Lagrangian algorithm.
  • Cette thèse est dédiée à l'étude mathématique de quelques modèles de trafic routier congestionné. La notion essentielle est l'équilibre de Wardrop. Elle poursuit des travaux de Carlier et Santambrogio avec des coauteurs. Baillon et Carlier ont étudié le cas de grilles cartésiennes dans ℝ² de plus en plus denses, dans le cadre de la théorie de Γ-convergence. Trouver l'équilibre de Wardrop revient à résoudre des problèmes de minimisation convexe. Dans le chapitre 2, nous regardons ce qui se passe dans le cas de réseaux généraux, de plus en plus denses, dans ℝ^d. Des difficultés nouvelles surgissent par rapport au cas initial de réseaux cartésiens et pour les contourner, nous introduisons la notion de courbes généralisées. Des hypothèses structurelles sur ces suites de réseaux discrets sont nécessaires pour s'assurer de la convergence. Cela fait alors apparaître des fonctions qui sont des sortes de distances de Finsler et qui rendent compte de l'anisotropie du réseau. Nous obtenons ainsi des résultats similaires à ceux du cas cartésien. Dans le chapitre 3, nous étudions le modèle continu et en particulier, les problèmes limites. Nous trouvons alors des conditions d'optimalité à travers une formulation duale qui peut être interprétée en termes d'équilibres continus de Wardrop. Cependant, nous travaillons avec des courbes généralisées et nous ne pouvons pas appliquer directement le théorème de Prokhorov, comme cela a été le cas dans [Baillon et Carlier]. Pour pouvoir néanmoins l'utiliser, nous considérons une version relaxée du problème limite, avec des mesures d'Young. Dans le chapitre 4, nous nous concentrons sur le cas de long terme, c'est-à-dire, nous fixons uniquement les distributions d'offre et de demande. Comme montré dans [Brasco], le problème de l'équilibre de Wardrop est équivalent à un problème à la Beckmann et il se réduit à résoudre une EDP elliptique, anisotropique et dégénérée. Nous utilisons la méthode de résolution numérique de Lagrangien augmenté présentée dans [Benamou] pour proposer des exemples de simulation. Enfin, le chapitre 5 a pour objet l'étude de problèmes de Monge avec comme coût une distance de Finsler. Cela se reformule en des problèmes de flux minimal et une discrétisation de ces problèmes mène à un problème de point-selle. Nous le résolvons alors numériquement, encore grâce à un algorithme de Lagrangien augmenté.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2015
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software