About: An information theoretic approach to econometrics   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Author
dc:subject
  • Économétrie
  • Econometrics
preferred label
  • An information theoretic approach to econometrics
Language
Subject
dc:title
  • An information theoretic approach to econometrics
note
  • \"This book is intended to provide the reader with a firm conceptual and empirical understanding of basic information-theoretic models and methods. Because most data are observational, practitioners work with indirect noisy observation and ill-posed econometric in the form of stochastic inverse problems. Consequently, traditional econometric methods in many cases are not applicable for answering many of the quantitative questions that analysts wish to ask. After initial chapters deal with parametric and semiparametric linear probability models, the focus turns to solving nonparametric stochastic inverse problems. In succeeding chapters, a family of pwer divergence measure-likelihood functions are introduced for a range of traditional and nontraditional econometric-models problems. Finally, within either an empirical maximum likelihood or loss context, Ron C. Mittelhammer and George G. Judge suggest a basis for choosing a member of the divergence family\"--
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2012
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software