About: Méthode de décomposition de domaine avec adaptation de maillage en espace-temps pour les équations d'Euler et de Navier-Stockes   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Thesis advisor
Praeses
Author
alternative label
  • Adaptive space-time domain décomposition methods for Euler and Navier-Stockes equations
dc:subject
  • GPU
  • Thèses et écrits académiques
  • Modélisation CFD
  • Calcul intensif (informatique)
  • Relaxation, Méthodes de (mathématiques)
  • Décomposition de domaines (mathématiques)
  • OpenMP (informatique)
  • MPI (protocole de réseaux d'ordinateurs)
  • Euler, Équations d' -- Équations de Navier-Stokes -- Solutions numériques
preferred label
  • Méthode de décomposition de domaine avec adaptation de maillage en espace-temps pour les équations d'Euler et de Navier-Stockes
Language
Subject
dc:title
  • Méthode de décomposition de domaine avec adaptation de maillage en espace-temps pour les équations d'Euler et de Navier-Stockes
Degree granting institution
Opponent
note
  • Numerical simulations of more and more complex fluid dynamics phenomena, especially unsteady phenomena, require solving systems of equations with high degrees of freedom. Under their original form, these aerodynamic multi-scale problems are difficult to solve, costly in CPU time and do not allow simulations of large time scales. An implicit formulation, similar to the Schwarz method, with a simple block parallelisation and explicit coupling is no longer sufficient. More robust domain decomposition methods must be conceived so as to make use and adapt to the most of existent hardware.The main aim of this study was to build a parallel in space and in time CFD Finite Volumes code for steady/unsteady problems modelled by Euler and Navier-Stokes equations based on Schwarz method that improves consistency, accelerates convergence and decreases computational cost. First, a study of discretisation and numerical schemes to solve steady and unsteady Euler and Navier–Stokes problems has been conducted. Secondly, an adaptive timespace domain decomposition method has been proposed, as it allows local time stepping in each sub-domain. Thirdly, we have focused our study on the implementation of different parallel computing strategies (OpenMP, MPI, GPU). Numerical results illustrate the efficiency of the method.
  • En mécanique des fluides, la simulation de phénomènes physiques de plus en plus complexes, en particulier instationnaires, nécessite des systèmes d’équations à nombre très élevé de degrés de liberté. Sous leurs formes originales, ces problèmes sont coûteux en temps CPU et ne permettent pas de faire une simulation sur une grande échelle de temps. Une formulation implicite, similaire à une méthode de Schwarz, avec une parallélisation simple par blocs et raccord explicite aux interfaces ne suffit plus à la résolution d’un tel système. Des méthodes de décomposition des domaines plus élaborées, adaptées aux nouvelles architectures, doivent être mises en place.Cette étude a consisté à élaborer un code de mécanique des fluides, parallèle, capable d’optimiser la convergence des méthodes du type Schwarz tout en améliorant la stabilité numérique et en diminuant le temps de calcul de la simulation. Une première partie a été l’étude de schémas numériques pour des problèmes stationnaires et instationnaires de type Euler et Navier–Stokes. Deuxièmement, une méthode de décomposition de domaine adaptive en espace-temps, a été proposée afin de profiter de l’échelle de temps caractéristique de la simulation dans chaque sous-domaine. Une troisième étude a été concentrée sur les moyens existants qui permettent de mettre en oeuvre ce code en parallèle (MPI, OPENMP, GPU). Des résultats numériques montrent l’efficacité de la méthode.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2014
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software