About: Multispectral imaging and its use for face recognition, sensory data enhancement   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Thesis advisor
Praeses
Author
alternative label
  • Imagerie multispectrale et son usage pour la reconnaissance de visage, amélioration des données sensorielles
dc:subject
  • Segmentation
  • Imagerie multispectrale
  • Thèses et écrits académiques
  • Traitement d'images -- Techniques numériques
  • Reconnaissance des formes (informatique)
  • Amélioration des données sensorielles
  • Analyse de clustering débruitage
  • Image multispectrale
preferred label
  • Multispectral imaging and its use for face recognition, sensory data enhancement
Language
Subject
dc:title
  • Multispectral imaging and its use for face recognition, sensory data enhancement
Degree granting institution
Opponent
note
  • In this thesis, we focus on multispectral image for face recognition. With such application,the quality of the image is an important factor that affects the accuracy of therecognition. However, the sensory data are in general corrupted by noise. Thus, wepropose several denoising algorithms that are able to ensure a good tradeoff betweennoise removal and details preservation. Furthermore, characterizing regions and detailsof the face can improve recognition. We focus also in this thesis on multispectral imagesegmentation particularly clustering techniques and cluster analysis. The effectiveness ofthe proposed algorithms is illustrated by comparing them with state-of-the-art methodsusing both simulated and real multispectral data sets.
  • La recherche en biométrie a connu une grande évolution durant les dernières annéessurtout avec le développement des méthodes de décomposition de visage. Cependant,ces méthodes ne sont pas robustes particulièrement dans les environnements incontrôlés.Pour faire face à ce problème, l'imagerie multispectrale s'est présentée comme une nouvelletechnologie qui peut être utilisée en biométrie basée sur la reconnaissance de visage.Dans tous ce processus, la qualité des images est un facteur majeur pour concevoirun système de reconnaissance fiable. Il est essentiel de se disposer d'images de hautequalité. Ainsi, il est indispensable de développer des algorithmes et des méthodes pourl'amélioration des données sensorielles. Cette amélioration inclut plusieurs tâches tellesque la déconvolution des images, le defloutage, la segmentation, le débruitage. . . Dansle cadre de cette thèse, nous étudions particulièrement la suppression de bruit ainsi quela segmentation de visage.En général, le bruit est inévitable dans toutes applications et son élimination doit sefaire tout en assurant l'intégrité de l'information confinée dans l'image. Cette exigenceest essentielle dans la conception d'un algorithme de débruitage. Le filtre Gaussienanisotropique est conçu spécifiquement pour répondre à cette caractéristique. Nous proposonsd'étendre ce filtre au cas vectoriel où les données en disposition ne sont plus desvaleurs de pixels mais un ensemble de vecteurs dont les attribues sont la réflectance dansune longueur d'onde spécifique. En outre, nous étendons aussi le filtre de la moyennenon-local (NLM) dans le cas vectoriel. La particularité de ce genre de filtre est la robustesseface au bruit Gaussien.La deuxième tâche dans le but d'amélioration de données sensorielles est la segmentation.Le clustering est l'une des techniques souvent utilisées pour la segmentation etclassification des images. L'analyse du clustering implique le développement de nouveauxalgorithmes particulièrement ceux qui sont basés sur la méthode partitionnelle.Avec cette approche, le nombre de clusters doit être connu d'avance, chose qui n'est pastoujours vraie surtout si nous disposons de données ayant des caractéristiques inconnues.Dans le cadre de cette thèse, nous proposons de nouveaux indices de validationde clusters qui sont capables de prévoir le vrai nombre de clusters même dans le cas dedonnées complexes.A travers ces deux tâches, des expériences sur des images couleurs et multispectrales sontréalisées. Nous avons utilisé des bases de données d'image très connues pour analyserl'approche proposée.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2015
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software