Attributes | Values |
---|
type
| |
Thesis advisor
| |
Author
| |
alternative label
| - Combinatorial aspects in 2D and 3D modeling and application to the enumeration of maps and solids
|
dc:subject
| - Thèses et écrits académiques
- Équations fonctionnelles
- Variétés topologiques à 3 dimensions
- Structures de données (informatique)
- Graphes planaires
- Topologie combinatoire
- Programmation géométrique
- Combinatoire/équations fonctionnelles/cartes/solides/modélisation géométrique/structures de données
|
preferred label
| - Aspects combinatoires en modélisation 2D et 3D et application à l'énumération des cartes et des solides
|
Language
| |
Subject
| |
dc:title
| - Aspects combinatoires en modélisation 2D et 3D et application à l'énumération des cartes et des solides
|
Degree granting institution
| |
note
| - Après les travaux de W. T. Tutte sur le comptage de diverses familles de cartes planaires, le point de vue adopté ici est celui de la définition de transformations topologiques sur les cartes à partir desquelles on déduit des équations sur leurs séries génératrices. Un premier résultat concerne l'énumération des cartes sur le tore en fonction du nombre d'arêtes et du degré d'une face distinguée. Une nouvelle équation sur la série génératrice est obtenue après une étude détaillée d'une transformation topologique consistant à contracter une face distinguée. Un second résultat concerne l'étude d'un problème d'évolution linéaire sur un multigraphe muni d'une valuation formelle. La résolution de ce problème conduit à une équation nouvelle attachée à tout graphe. Cette équation, appliquée dans le cas particulier de l'arbre infini naturellement associé à la famille des cartes planaires, conduit à une équation nouvelle pour la série génératrice de ces cartes planaires, exprimant celle-ci en fonction de la série génératrice des mots de Dyck. Le troisième résultat concerne une généralisation à trois dimensions au niveau des solides topologiques, des notions classiques sur les cartes. La notion de solide est introduite en termes de sommets, arêtes, faces et en y ajoutant une composante supplémentaire : celle de volume. Une propriété importante mise en évidence est celle d'effeuillabilité, celle-ci permettant de généraliser en 3D la notion d'arbre par celle de solide effeuillable. On donne alors l'énumération d'une classe particulière de tels solides effeuillables : les solides-arbres par la suite de Schröder-Etherington
|
dc:type
| |
http://iflastandar...bd/elements/P1001
| |
rdaw:P10219
| |
has content type
| |
is primary topic
of | |
is rdam:P30135
of | |