About: New structure learning algorithms and evaluation methods for large dynamic Bayesian networks   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Thesis advisor
Praeses
Author
alternative label
  • Nouveaux algorithmes d’apprentissage et méthodes d’évaluation pour les grands réseaux bayésiens dynamiques
dc:subject
  • Thèses et écrits académiques
  • Statistique bayésienne
  • Méthode comparative
  • Méthodes de recherche locale
  • Structure d’apprentissage
preferred label
  • New structure learning algorithms and evaluation methods for large dynamic Bayesian networks
Language
Subject
dc:title
  • New structure learning algorithms and evaluation methods for large dynamic Bayesian networks
Degree granting institution
note
  • Les réseaux bayésiens dynamiques (RBD) sont une classe de modèles graphiques probabilistes qui est devenu un outil standard pour la modélisation de divers phénomènes stochastiques variant dans le temps. A cause de la complexité induite par l’ajout de la dimension temporelle, l’apprentissage de la structure DBN est une tâche très complexe. Les algorithmes existants sont des adaptations des algorithmes d’apprentissage de structure pour les RB basés sur score mais sont souvent limitées lorsque le nombre de variables est élevée. Une autre limitation pour les études d’apprentissage de la structure des RBD, ils utilisent leurs propres Benchmarks et techniques pour l'évaluation. Le problème dans le cas dynamique, nous ne trouvons pas de travaux antérieurs qui fournissent des détails sur les réseaux et les indicateurs de comparaison utilisés. Nous nous concentrons dans ce projet à l’apprentissage de la structure des RBD et ses méthodes d’ évaluation avec respectivement une autre famille des algorithmes d’apprentissage de la structure, les méthodes de recherche locale, et une nouvelle approche de génération des grandes standard RBD et un métrique d’ évaluation. Nous illustrons l’intérêt et de ces méthodes avec des résultats expérimentaux.
  • Dynamic Bayesian networks (DBNs) are a class of probabilistic graphical models that has become a standard tool for modeling various stochastic time-varying phenomena. Probabilistic graphical models such as 2-Time slice BN (2TBNs) are the most used and popular models for DBNs. Because of the complexity induced by adding the temporal dimension, DBN structure learning is a very complex task. Existing algorithms are adaptations of score-based BN structure learning algorithms but are often limited when the number of variables is high. Another limitation of DBN structure learning studies, they use their own benchmarks and techniques for evaluation. The problem in the dynamic case is that we don’t find previous works that provide details about used networks and indicators of comparison. We focus in this project on DBN structure learning and its methods of evaluation with respectively another family of structure learning algorithms, local search methods, known by its scalability and a novel approach to generate large standard DBNs and metric of evaluation. We illustrate the interest of these methods with experimental results.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2013
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software