About: Equations différentielles stochastiques rétrogrades et contrôle stochastique et applications aux mathématiques financières   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Thesis advisor
Author
alternative label
  • Backward stochastic differential equations and stochastic control and applications to mathematical fiance
dc:subject
  • Thèses et écrits académiques
  • Processus stochastiques
  • Commande, Théorie de la
  • Équations différentielles stochastiques
  • Mathématiques financières
  • »more»
preferred label
  • Equations différentielles stochastiques rétrogrades et contrôle stochastique et applications aux mathématiques financières
Language
Subject
dc:title
  • Equations différentielles stochastiques rétrogrades et contrôle stochastique et applications aux mathématiques financières
Degree granting institution
note
  • This thesis is divided into two parts that may be read independently. In the first part, three uses of backward stochastic differential equations are presented. The first chapter is an application of these equations to the mean-variance hedging problem in an incomplete market where multiple defaults can occur. We make a conditional density hypothesis on the default times. We then decompose the value function into a sequence of value functions between consecutive default times and we prove that each of them admits a quadratic form. Finally, we illustrate our results for a specific case where 2 default times follow independent exponential laws. The two following applications are extensions of the paper [75]. The second chapter is the study of a class of backward stochastic differential equations with nonpositive jumps and upper barrier. Existence and uniqueness of a minimal solution are proved by a double penalization approach under regularity assumptions on the obstacle. This method allows us to solve the case where the diffusion coefficient is degenerate. We also show, in a suitable markovian framework, the connection between our class of backward stochastic differential equations and fully nonlinear variational inequalities. In particular, our backward equation representation provides a Feynman-Kac type formula for PDEs associated to general zero-sum stochastic differential controller-and-stopper games, where control affects both drift and diffusion term, and the diffusion coefficient can be degenerate. Moreover, we state a dual game formula of this backward equation minimal solution, which gives a new representation for zero-sum stochastic differential controller-and-stopper games The third chapter is linked to model uncertainty, where the uncertainty affects both volatility and intensity. This kind of stochastic control problems is associated to a fully nonlinear integro-partial differential equation, such that the measure lambda(a,.) characterizing the jump part depends on a parameter a. We do not assume that the family lambda(a,.) is dominated. We obtain a nonlinear Feynman-Kac formula for the value function associated to these control problems. To this aim, we introduce a class of backward stochastic differential equations with jumps and partially constrained diffusive part. Here the case where the diffusion coefficient is degenerate is solved as well. In the second part, a conditional asset liability management problem is solved. We first derive the proper domain of definition of the value function associated to the problem by identifying the minimal wealth for which there exists an admissible investment strategy allowing to satisfy the constraint at maturity. This minimal wealth is identified as a solution of viscosity of a PDE. We also show that its Fenschel-Legendre transform is a solution of viscosity of another PDE, which allows to obtain a scheme with a faste convergence. We then identify the value function linked to the problem of interest as a solution of viscosity of a PDE on its domain of definition. Finally, we solve numerically the problem and we provide graphs of the minimal wealth, of the value function of the problem and of the optimal strategy.
  • Cette thèse est constituée de deux parties pouvant être lues indépendamment. Dans la première partie de la thèse, trois utilisations des équations différentielles stochastiques rétrogrades sont présentées. Le premier chapitre est une application de ces équations au problème de couverture moyenne-variance dans un marché incomplet où des défauts multiples peuvent survenir. Nous faisons une hypothèse de densité conditionnelle sur les temps de défaut. Nous décomposons ensuite la fonction valeur en une suite de fonctions valeur entre deux défauts consécutifs et nous prouvons la forme quadratique de chacune d'entre elles. Enfin, nous illustrons nos résultats dans un cas particulier à 2 temps de défaut suivant des lois exponentielles indépendantes. Les deux chapitres suivants sont des extensions de l'article [75]. Le deuxième chapitre est l'étude d'une classe d'équations différentielles stochastiques rétrogrades avec sauts négatifs et barrière supérieure. L'existence et l'unicité d'une solution minimale sont prouvées par double pénalisation sous des hypothèses de régularité sur l'obstacle. Cette méthode permet de résoudre le cas où le coefficient de diffusion est dégénéré. Nous montrons aussi, dans un cadre markovien adapté, le lien entre notre classe d'équations rétrogrades et des inégalités variationnelles non linéaires. En particulier, notre représentation d'équation rétrograde donne une formule de type Feynman-Kac pour les équations aux dérivées partielles associées à des jeux différentiels stochastiques de type contrôleur et stoppeur à somme nulle, où le contrôle affecte à la fois les termes dérives de volatilité. De plus, nous obtenons une formule duale du jeu de la solution minimale de l'équation rétrograde, ce qui donne une nouvelle représentation des jeux différentiels stochastiques contrôleur et stoppeur à somme nulle. Le troisième chapitre est lié à l'incertitude de modèle, où l'incertitude affecte à la fois la volatilité et l'intensité. Ces problèmes de contrôle stochastiques sont associées à des équations intégro-différentielles aux dérivées partielles telles que la partie de saut est caractérisée par la mesure lambda(a,.) dépendant d'un paramètre a. Nous ne supposons pas que la famille lambda(a,.) est dominée. Nous obtenons une formule non linéaire de type Feynman-Kac à la fonction valeur associée à ces problèmes de contrôle. Pour cela, nous introduisons une classe d'équations différentielles stochastiques rétrogrades avec saut et une partie diffusive partiellement contrainte. Ici aussi le cas où le coefficient de diffusion est dégénéré est résolu Dans la seconde partie de la thèse, un problème de gestion actif-passif conditionnelle est résolu Nous obtenons d'abord le domaine de définition de la fonction valeur associée au problème en identifiant la richesse minimale pour laquelle il existe une stratégie d'investissement admissible permettant de satisfaire la contrainte à maturité. Cette richesse minimal est identifiée comme une solution de viscosité d'une EDP. Nous montrons aussi que sa transformée de Fenschel-Legendre est une solution de viscosité d'une autre EDP, ce qui permet d'obtenir un schéma numérique avec une convergence plus rapide. Nous identifions ensuite la fonction valeur liée au problème d'intérêt comme une solution de viscosité d'une EDP sur son domaine de définition. Enfin, nous résolvons numériquement le problème en présentant des graphes de la richesse minimale, de la fonction valeur du problème et de la stratégie optimale.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2015
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software