About: Résolution de contraintes géométriques par rigidification récursive et propagation d'intervalles   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Thesis advisor
Author
alternative label
  • Solving geometric constraints by recursive rigidification and interval propagation
dc:subject
  • Thèses et écrits académiques
  • Contraintes (mécanique)
preferred label
  • Résolution de contraintes géométriques par rigidification récursive et propagation d'intervalles
Language
Subject
dc:title
  • Résolution de contraintes géométriques par rigidification récursive et propagation d'intervalles
Degree granting institution
note
  • Les problèmes de satisfaction de contraintes géométriques (GCSP) sont omniprésents dans les applications de CAO, de robotique ou de biologie moléculaire. Ils consistent à chercher les positions, orientations et dimensions d'objets géométriques soumis à des relations géométriques. Le but de la thèse était de proposer une méthode complète et efficace pour la résolution de GCSP. Dans la première partie, nous comparons des méthodes de résolution et de décomposition, et optons pour la décomposition de Hoffmann {\sl et al.} et la résolution par intervalles. Nous définissons un cadre général pour l'étude de la rigidité, concept central dans les techniques de décomposition géométriques. Dans la seconde partie, nous analysons la méthode de Hoffmann {\sl et al.}, et les limites inhérentes à toute approche géométrique structurelle. Nous proposons le concept de degré de rigidité pour surmonter certaines de ces limites. Nous introduisons une nouvelle méthode de décomposition, et sa combinaison avec les intervalles.
  • Geometric constraint satisfaction problems (GCSPs) are ubiquitous in applications like CAD, robotics or molecular biology. They consist in searching positions, orientations and dimensions of geometric objects bound by geometric constraints. The goal of the thesis was to find an efficient and complete solving method for GCSPs. In the first part, we compare solving methods and decomposition techniques, and we choose Hoffmann et al's decomposition and interval solving methods . We define a general framework for the study of rigidity in GCSPs, a concept used in all the geometric decomposition methods. In the second part, we analyse Hoffmann et al's method, and the limits inherent to all the structural geometric approaches. We propose the degree of rigidity concept to overcome some of these limits. We introduce a new decomposition method, and its combination with interval solving methods.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2002
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software