About: Contrôle et transmission de l'information dans les systèmes de spins   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Thesis advisor
Praeses
Author
alternative label
  • Control and transmission of the information in the spin system
dc:subject
  • Thèses et écrits académiques
  • Chaos
  • Transmission d'information
  • Contôle
  • Opérateur de Koopman
  • Rapport signal-bruit
  • Spins
  • Théorèmes adiabatiques
preferred label
  • Contrôle et transmission de l'information dans les systèmes de spins
Language
Subject
dc:title
  • Contrôle et transmission de l'information dans les systèmes de spins
Degree granting institution
Opponent
note
  • At an atomic level, the spin control is an essential aim in quantum physics. Unfortunately, the presence of noises disturbs this last. The goal is to find the conditions which we have to impose to the environment in order that the control is not disturbed by the noise. The study of a spin chain characterized by three couplings (Heisenberg, Ising-Z and Ising-X interactions) freely evolving is taken as reference. We observe that the Heisenberg interaction corresponds to an isotropic coupling. The Ising-Z one conserves the order into the chain whereas the Ising-X one is really disordered. We consider a more complex quantum system by adding some control and analyzing its adiabatic behavior. This last is composed by a system and an environment, for which the coupling is perturbative. Three adiabatic regimes have been highlighted. Some formulas allowing to obtain the wave function across the time have been established for these three regimes. However, in practice, quantum systems are not isolated. The interaction with their environment can lead to more complex behaviors, driving the control more difficult. We have studied spin systems, coupled or not, kicked by some ultrashort magnetic pulse trains. These trains cross a classical environment (stationary, drift, Markovian, microcanonical) modifying the strength and the delay of each pulse. The modification of the trains by the environment is one of the sources of the disorder into the spin system. This disorder is transmitted between the spins by the coupling. In this study we do not succeed in controlling the system when the trains are in the presence of the previous environments. To remedy this situation, we force the magnetic pulses to cross a chaotic environment. Before a time t, called horizon of coherence, the system coupled by an Heisenberg interaction and submitted to a chaotic environment remains coherent whereas after, the population and the coherence of one spin and of the average spin of the system tend to go near the microcanonical distribution. During this horizon, it is possible to realize some quantum control either by total control (control of the system at every instants) or by information transmission. This study allows us to determine an empirical formula of the horizon of coherence. Finally, we have tried to find a more formal approach for this horizon.
  • Au niveau atomique, le contrôle de spins est un objectif primordial en physique quantique. Malheureusement la présence de bruits gêne ce dernier. Le but est de trouver les conditions à imposer à l’environnement pour que le contrôle ne soit pas perturbé par le bruit. L’étude d’une chaîne de spins caractérisée par trois couplages : interactions d’Heisenberg, d’Ising-Z et d’Ising-X, évoluant librement est prise comme référence. Nous observons que l’interaction d’Heisenberg correspond à un couplage isotrope. Celle d’Ising-Z conserve l’ordre dans la chaîne tandis que celle d’Ising-X est très désordonnée. Nous rendons le système plus complexe en ajoutant du contrôle et en analysant le comportement adiabatique d’un système quantique. Ce dernier est composé d’un système et d’un environnement, dont le couplage est perturbatif. Trois régimes adiabatiques ont été mis en évidence. Des formules permettant d’obtenir la fonction d'onde au cours du temps ont alors été établies pour ces trois régimes. Cependant, dans la pratique, les systèmes quantiques ne sont en aucun cas isolés. L’interaction avec leur environnement peut entraîner des comportements plus complexes, rendant le contrôle très difficile. Nous avons alors étudié des systèmes de spins, couplés ou non, frappés par des trains d’impulsions magnétiques ultracourtes. Ces trains traversent un environnement classique (stationnaire, de dérive linéaire, Markovien, microcanonique) modifiant la force et le retard de chaque impulsion. La modification des trains par l’environnement classique est une des sources du désordre dans le système de spins. Ce désordre est transmis entre les spins par le couplage. Dans cette étude nous n’arrivons pas à contrôler le système lorsque les trains sont en présence des environnements précédents. Pour palier à ce problème, nous imposons aux impulsions magnétiques de traverser un environnement chaotique. Avant un temps t, appelé horizon de cohérence, le système couplé par une interaction d’Heisenberg et soumis à un environnement chaotique reste cohérent alors qu’après, la population et la cohérence d'un spin et du spin moyen du système tendent à se rapprocher de la distribution microcanonique. Pendant cet horizon, il est possible de réaliser du contrôle quantique soit par contrôle total (contrôle du système à chaque instant), soit par transmission d’information. Cette étude nous a permis de déterminer une formule empirique de l’horizon de cohérence. Finalement, nous nous sommes attachés à trouver une formule plus formelle de cet horizon.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2017
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software