About: Contributions au développement d'outils computationnels de design de protéine, méthodes et algorithmes de comptage avec garantie   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Thesis advisor
Author
alternative label
  • Contribution to protein design tools, counting methods and algorithms
dc:subject
  • Comptage
  • Thèses et écrits académiques
  • Algorithmes
  • Markov, Processus de
  • Protéines de liaison
  • Modèle graphique
  • Fonction de partition
  • Interaction protéine-protéine
  • #P complet
  • Affinité de liaison
  • Champ de Markov
  • Constante de normalisation
  • Design computationnel de protéine
  • Réseau de fonctions de coût
preferred label
  • Contributions au développement d'outils computationnels de design de protéine, méthodes et algorithmes de comptage avec garantie
Language
Subject
dc:title
  • Contributions au développement d'outils computationnels de design de protéine, méthodes et algorithmes de comptage avec garantie
Degree granting institution
note
  • This thesis is focused on two intrinsically related subjects : the computation of the normalizing constant of a Markov random field and the estimation of the binding affinity of protein-protein interactions. First, to tackle this #P-complete counting problem, we developed Z*, based on the pruning of negligible potential quantities. It has been shown to be more efficient than various state-of-the-art methods on instances derived from protein-protein interaction models. Then, we developed #HBFS, an anytime guaranteed counting algorithm which proved to be even better than its predecessor. Finally, we developed BTDZ, an exact algorithm based on tree decomposition. BTDZ has already proven its efficiency on intances from coiled coil protein interactions. These algorithms all rely on methods stemming from graphical models : local consistencies, variable elimination and tree decomposition. With the help of existing optimization algorithms, Z* and Rosetta energy functions, we developed a package that estimates the binding affinity of a set of mutants in a protein-protein interaction. We statistically analyzed our esti- mation on a database of binding affinities and confronted it with state-of-the-art methods. It appears that our software is qualitatively better than these methods.
  • Cette thèse porte sur deux sujets intrinsèquement liés : le calcul de la constante de normalisation d’un champ de Markov et l’estimation de l’affinité de liaison d’un complexe de protéines. Premièrement, afin d’aborder ce problème de comptage #P complet, nous avons développé Z*, basé sur un élagage des quantités de potentiels négligeables. Il s’est montré plus performant que des méthodes de l’état de l’art sur des instances issues d’interaction protéine-protéine. Par la suite, nous avons développé #HBFS, un algorithme avec une garantie anytime, qui s’est révélé plus performant que son prédécesseur. Enfin, nous avons développé BTDZ, un algorithme exact basé sur une décomposition arborescente qui a fait ses preuves sur des instances issues d’interaction intermoléculaire appelées “superhélices”. Ces algorithmes s’appuient sur des méthodes issuse des modèles graphiques : cohérences locales, élimination de variable et décompositions arborescentes. A l’aide de méthodes d’optimisation existantes, de Z* et des fonctions d’énergie de Rosetta, nous avons développé un logiciel open source estimant la constante d’affinité d’un complexe protéine protéine sur une librairie de mutants. Nous avons analysé nos estimations sur un jeu de données de complexes de protéines et nous les avons confronté à deux approches de l’état de l’art. Il en est ressorti que notre outil était qualitativement meilleur que ces méthodes.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2017
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software