About: Ultrasound sensitive agents for transcranial functional imaging, super-resolution microscopy and drug delivery   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Thesis advisor
Author
alternative label
  • Utilisation d'agents sensibles aux ultrasons pour l'imagerie fonctionnelle transcrânienne du cerveau, microscopie ultrasonore et délivrance ultrasonore de médicaments
dc:subject
  • Thèses et écrits académiques
  • Microscopie -- Technique
  • Imagerie moléculaire
  • Médicaments -- Modes d'administration
  • Ultrasonothérapie
  • Échographie-doppler transcrânienne -- Dissertation universitaire
  • Microbulles de contraste
  • micro-gouttes
  • super-résolution
  • Neuroimagerie fonctionnelle -- statistiques et données numériques -- Dissertation universitaire
preferred label
  • Ultrasound sensitive agents for transcranial functional imaging, super-resolution microscopy and drug delivery
Language
Subject
dc:title
  • Ultrasound sensitive agents for transcranial functional imaging, super-resolution microscopy and drug delivery
Degree granting institution
note
  • This thesis focuses on two main branches of the application of ultrasound contrast agents: microbubbles-aided ultrafast ultrasound imaging of the brain and ultrasound-triggered drug delivery for cancer therapy. At first, gas-filled microbubbles have been used to retrieve the brain activation through the skull in large animais. With this approach we have been able to non-invasively reconstruct the cerebral network of the brain, as well as retrieve its hemodynamic response to specific evoked tasks with high spatiotemporal resolution. The validation of this novel functional ultrasound (fUS) imaging approach was facilitated by the high sensitivity of the ultrasensitive Doppler technique able to detect subtle hemodynamic changes due to the neurovascular coupling. These resuits suggested that combining microbubbles injections with ultrafast imaging may help to fully compensate for the attenuation from the skull. Indeed, by combining both, we preserved resolution and increased penetration depth. The injection of ultrasound contrast agents has also lead to outstanding resuits in ultrafast ultrasound imaging by breaking the diffraction barrier and move beyond the half-wavelength limit in resolution. We have demonstrated that cerebral microvessels of 9pm in diameter can me distinguished via ultrafast ultrasound localization microscopy (uULM). Millions of blinking sources were localized in space and in time in few seconds in a higher dimensional space, leading to super-resolved images (microbubble density map) of the whole rat brain with a spatial resolution of À/10. Moreover, a displacement vector allowed microbubbles-tracking within frames yielding to in-plane velocity measurements retrieving a large dynamic of cerebral blood velocities. Next, we have exploited how we can spatiotemporally control the vaporization of composite perfluorocarbon (PFC) microdroplets when their activation is triggered by short ultrasound pulses. The concept 'chemistry in-situ' is introduced as we have been able to control a spontaneous chemical reaction in-vitro. Moreover, a new microfluidic device in glass has been proposed to robustly produce monodisperse droplets for future in-vivo applications of the chemistry in situ. This new device presents 128-parallel generators with two pressurized rivers. Eventually, new ultrafast ultrasound monitoring sequences have been developed in order to control and monitor the release of composite droplets.
  • Cette thèse porte sur deux branches majeures de l'utilisation d'agents sensibles aux ultrasons: l'échographie ultrarapide du cerveau assistée par microbulles et la délivrance par ultrasons de médicaments pour la thérapie du cancer. Dans la première approche, des microbulles remplies de gaz fluoré ont été utilisés pour observer l'activation du cerveau à travers le crâne des rongeurs. Nous avons été en mesure de reconstituer de manière non invasive le réseau vasculaire du cerveau, puis de récupérer sa réponse hémodynamique avec une résolution spatio-temporelle élevée. La validation de cette approche d'imagerie fonctionnelle par échographie (FUS) a été facilitée par la grande sensibilité de la technique du Doppler ultrarapide ultrasensible. En effet, cette modalité d'imagerie permet de détecter les changements hémodynamiques dus au couplage neurovasculaire avec une grande résolution (1ms, 100pm). Ces résultats suggèrent que la combinaison des agents de contraste et l'imagerie ultrarapide peut aider à compenser entièrement l'atténuation par le crâne, et ce en préservant la résolution et en augmentant la profondeur de pénétration. L'injection d'agents de contraste ultrasonore a également conduit à des résultats remarquables en imagerie ultrasonore ultrarapide. La barrière de la diffraction a été contournée pour aller au-delà de la limite de demi-longueur d'onde de résolution. Nous avons démontré que des microvaisseaux cérébraux de 9pm de diamètre peuvent être distingués par microscopie échographie ultrarapide de localisation (uULM). Des millions de sources «clignotantes» sont localisées dans l'espace et dans le temps, conduisant à des images super-résolues (cartographie de densité de microbulles) de l'ensemble du réseau vasculaire du cerveau du rat avec une résolution spatiale de À / 10. En outre, les trajets des microbulles au cours du temps ont pu être relevés et ainsi permettre d'extraire les vitesses des flux sanguins avec une grande dynamique. Dans la seconde approche, nous avons exploité la manière dont nous pouvons contrôler, spatialement et temporellement, la vaporisation de micro gouttes composites de perfluorocarbone (PFC) lorsque leur activation est déclenchée par de courtes impulsions ultrasonore. Le concept de \"chimie in-situ\" est introduit dès lors que nous avons été en mesure de contrôler une réaction chimique spontanée in vitro. En outre, dans le cadre des applications in vivo de la chimie in situ, un nouveau dispositif microfluidique en verre a été proposé afin de permettre une production stable et rapide de gouttes monodisperses. Ce nouveau dispositif présente 128 générateurs en parallèles avec deux canaux sous pression. Finalement, de nouvelles séquences d'échographie de contrôle ultra-rapides ont été développées dans le but de contrôler et de surveiller la libération des gouttelettes composites.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2016
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software