About: Symbols, An Evolutionary History from the Stone Age to the Future   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Author
alternative label
  • Symbols
dc:subject
  • Machine Learning
  • Computational Linguistics
  • Computational linguistics
  • Computer simulation
  • Machine learning
  • Social sciences -- Data processing
  • Natural language processing (Computer science)
  • Digital humanities
  • Signes et symboles -- Histoire
  • Signs and symbols -- History
  • Natural Language Processing (NLP)
  • Digital Humanities
  • Computer Application in Social and Behavioral Sciences
  • Computer Modelling
  • Social sciences—Data processing
preferred label
  • Symbols, An Evolutionary History from the Stone Age to the Future
Language
Subject
dc:title
  • Symbols, An Evolutionary History from the Stone Age to the Future
note
  • For millennia humans have used visible marks to communicate information. Modern examples of conventional graphical symbols include written language, and non-linguistic symbol systems such as mathematical symbology or traffic signs. The latter kinds of symbols convey information without reference to language. This book presents the first systematic study of graphical symbol systems, including a history of graphical symbols from the Paleolithic onwards, a taxonomy of non-linguistic systems – systems that are not tied to spoken language – and a survey of more than 25 such systems. One important feature of many non-linguistic systems is that, as in written language, symbols may be combined into complex “messages” if the information the system represents is itself complex. To illustrate, the author presents an in-depth comparison of two systems that had very similar functions, but very different structure: European heraldry and Japanese kamon. Writing first appeared in Mesopotamia about 5,000 years ago and is believed to have evolved from a previous non-linguistic accounting system. The exact mechanism is unknown, but crucial was the discovery that symbols can represent the sounds of words, not just the meanings. The book presents a novel neurologically-inspired hypothesis that writing evolved in an institutional context in which symbols were “dictated”, thus driving an association between symbol and sound, and provides a computational simulation to support this hypothesis. The author further discusses some common fallacies about writing and non-linguistic systems, and how these relate to widely cited claims about statistical “evidence” for one or another system being writing. The book ends with some thoughts about the future of graphical symbol systems. The intended audience includes students, researchers, lecturers, professionals and scientists from fields like Natural Language Processing, Machine Learning, Archaeology and Semiotics, as well as general readers interested in language and/or writing systems and symbol systems. Richard Sproat is a Research Scientist at Google working on Deep Learning. He has a long-standing interest in writing systems and other graphical symbol systems.
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2023
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software