About: La data, guide de survie dans le monde de la donnée   Goto Sponge  NotDistinct  Permalink

An Entity of Type : rdac:C10001, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
type
Author
dc:subject
  • Analyse de données
  • Guides pratiques
  • Intelligence artificielle
  • Données massives
  • Analyse des données
  • Entrepôts de données
  • Gestion des données (systèmes d'information)
  • Mégadonnées
  • Intégration de données (informatique)
  • Science des données
preferred label
  • La data, guide de survie dans le monde de la donnée
Language
Subject
dc:title
  • La data, guide de survie dans le monde de la donnée
note
  • \"Véritable manuel pratique, ce livre s'adresse à toute personne qui travaille avec les données (chefs de projets, CDO, Architectes, Ingénieurs Data ou même Data Scientists) et qui rencontre des besoins ponctuels sur des opérations à réaliser ou qui souhaite tout simplement étendre ses connaissances autour de la gestion de données. L'objectif est de présenter tous les concepts et notions utiles dès lors que l'on est impliqué dans un projet intégrant des données. Chaque chapitre peut être lu indépendamment des autres et des exemples viennent étayer les propos de l'auteur. Le lecteur commence avec une clarification indispensable des différents concepts qui gravitent autour de la donnée. Cette entrée en matière permet de démontrer que la donnée est une notion plus complexe qu'on ne le pense. Le livre aborde ensuite le stockage des données ce qui amène naturellement à la notion d'intégration de ces données avec tous les impacts sur le Système d'Information. La donnée étant mouvante, l'auteur expose ensuite les moyens à mettre en place pour une gouvernance de données efficace. Cela permet au lecteur de mieux comprendre comment définir un cadre qui sera contrôlé et maîtrisé et d'expliquer en quoi les entreprises qui mettent en oeuvre le Data Fabric ou le Data Mesh sont à même de proposer des services de données pertinents. Le livre détaille ensuite les méthodes d'analyse et de visualisation de données qui permettent de déceler des problèmes de qualité de données nécessitant ensuite de les nettoyer, les transformer et les valoriser en information de confiance. Le lecteur sera finalement invité à mettre un pied dans le monde de l'IA. Les principes et grandes notions autour du Machine Learning et du Deep Learning sont expliqués avec simplicité afin que le lecteur puisse mieux comprendre comment les algorithmes fonctionnent grâce aux données. Pour terminer, l'auteur explique comment les grandes architectures de données (Data warehouse, Data Lake, MDM, Data Hub et EDI) fonctionnent en détaillant leurs principes et leurs différences.\"
dc:type
  • Text
http://iflastandar...bd/elements/P1001
rdaw:P10219
  • 2022
has content type
is primary topic of
is rdam:P30135 of
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software