About: Improving topic modeling through homophily for legal documents   Goto Sponge  NotDistinct  Permalink

An Entity of Type : owl:Thing, within Data Space : data.idref.fr associated with source document(s)

AttributesValues
Author
Bibliographic Citation
  • Ashihara Kazuki, El Vaigh Cheikh Brahim, Chu Chenhui, Renoust Benjamin, Okubo Noriko, Takemura Noriko, Nakashima Yuta, Nagahara Hajime. Improving topic modeling through homophily for legal documents. Applied Network Science, Springer, 2020, 5 (1), ⟨10.1007/s41109-020-00321-y⟩
Title
  • Improving topic modeling through homophily for legal documents
dc:date
  • 2020
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software