AttributesValues
Author
Bibliographic Citation
  • Loménie Nicolas, Bertrand Capucine, Fick Rutger H.J., Ben Hadj Saima, Tayart Brice, Tilmant Cyprien, Farré Isabelle, Dequen Gilles, Feng Ming, Xu Kele, Li Zimu, Prevot Sophie, Bergeron Christine, Bataillon Guillaume, Devouassoux-Shisheboran Mojgan, Glaser Claire, Delaune Agathe, Valmary-Degano Séverine, Bertheau Philippe. Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?. Journal of Pathology Informatics, 2022, 13, pp.100149. ⟨10.1016/j.jpi.2022.100149⟩
Title
  • Can AI predict epithelial lesion categories via automated analysis of cervical biopsies: The TissueNet challenge?
dc:date
  • 2022
Digital Object Identifier (DOI)
  • 10.1016/j.jpi.2022.100149
Faceted Search & Find service v1.13.91 as of Aug 16 2018


Alternative Linked Data Documents: ODE     Content Formats:       RDF       ODATA       Microdata      About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data]
OpenLink Virtuoso version 07.20.3229 as of May 14 2019, on Linux (x86_64-pc-linux-gnu), Single-Server Edition (70 GB total memory)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software