This HTML5 document contains 33 embedded RDF statements represented using HTML+Microdata notation.

The embedded RDF content will be recognized by any processor of HTML5 Microdata.

PrefixNamespace IRI
marcrelhttp://id.loc.gov/vocabulary/relators/
dctermshttp://purl.org/dc/terms/
n15http://www.idref.fr/027394247/
n14http://www.idref.fr/02723875X/
n13http://www.idref.fr/02784272X/
dchttp://purl.org/dc/elements/1.1/
rdauhttp://rdaregistry.info/Elements/u/
skoshttp://www.w3.org/2004/02/skos/core#
n18http://www.idref.fr/027225402/
n2http://www.idref.fr/215809688/
n19http://lexvo.org/id/iso639-3/
n7http://iflastandards.info/ns/isbd/terms/contentform/
rdachttp://rdaregistry.info/Elements/c/
rdfhttp://www.w3.org/1999/02/22-rdf-syntax-ns#
frbrhttp://purl.org/vocab/frbr/core#
n6http://iflastandards.info/ns/isbd/elements/
n5http://rdaregistry.info/termList/RDAContentType/
n22http://www.idref.fr/110048369/
n11http://www.idref.fr/027474917/
rdawhttp://rdaregistry.info/Elements/w/
xsdhhttp://www.w3.org/2001/XMLSchema#
n12http://www.idref.fr/080851533/
n10http://www.idref.fr/027755568/
Subject Item
n2:id
rdf:type
frbr:Work rdac:C10001
marcrel:aut
n22:id
dc:subject
Dynamique symbolique Topology Topologie Functions of complex variables Analytic functions Differential Equations Topological dynamics Fonctions analytiques Dynamique topologique Mathematics Équations aux dérivées partielles Fonctions d'une variable complexe Mathématiques Differential equations, partial Symbolic dynamics
skos:prefLabel
Invariant factors, Julia equivalences, and the (abstract) Mandelbrot set
dcterms:language
n19:eng
dcterms:subject
n10:id n11:id n12:id n13:id n14:id n15:id n18:id
dc:title
Invariant factors, Julia equivalences, and the (abstract) Mandelbrot set
skos:note
This book is mainly devoted to the combinatorics of quadratic holomorphic dynamics. The conceptual kernel is a self-contained abstract counterpart of connected quadratic Julia sets which is built on Thurston's concept of a quadratic invariant lamination and on symbolic descriptions of the angle-doubling map. The theory obtained is illustrated in the complex plane. It is used to give rigorous proofs of some well-known and some partially new statements on the structure of the Mandelbrot set. The text is intended for graduate students and researchers. Some elementary knowledge in topology and in functions of one complex variable is assumed.
dc:type
Text
n6:P1001
n7:T1009
rdaw:P10219
2000
rdau:P60049
n5:1020