. . "Repeated quantum interaction systems, the perturbative approach" . "Th\u00E8ses et \u00E9crits acad\u00E9miques" . "D\u00E9veloppements asymptotiques" . . "Repeated interaction quantum systems are both simple and flexible models which arise naturally in several domains including, particularly, quantum optics and the theory of quantum noises. In this thesis, I became interested in their perturbative study. I generalized a theorem by Attal and Joye [Weak Coupling and Continuous Limits for Repeated Quantum Interactions, J. Stat. Phys., 126, (2007)] on the existence of van Hove limit for those systems to the framework of general von Neumann algebras. Then, I proved that, when the reference system is finite dimensional, the existence of a unique asymptotic state for its van Hove limit implies the convergence of the reference system's state towards a unique periodic asymptotic state, provided that the perturbation parameter is sufficiently small. Moreover, the zero-th order term in a power series expansion on the perturbation parameter of this periodic asymptotic state coincides with the asymptotic state of the van Hove limit, except for their difference in time scale which has to be taken into account (giving rise to the periodicity). This result is important in the physical justification for the use of the thermodynamic formalism in the weak coupling regime developed in [Lebowitz and Spohn, Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs, Adv. Chem. Phys. 38 (1978)]." . "Les syst\u00E8mes quantiques d'interactions r\u00E9p\u00E9t\u00E9es sont des mod\u00E8les \u00E0 la fois simples et flexibles qui appara\u00EEssent de fa\u00E7on naturelle dans plusieurs domaines, dont notamment l'optique quantique et la th\u00E9orie des bruits quantiques. Dans cette th\u00E8se, on s'est int\u00E9ress\u00E9 \u00E0 leur \u00E9tude perturbative. On a g\u00E9n\u00E9ralis\u00E9 un th\u00E9or\u00E8me d\u00FB a Attal et Joye [Attal and Joye, Weak Coupling and Continuous Limits for Repeated Quantum Interactions, J. Stat. Phys., 126, (2007)] sur l'existence de limite de van Hove pour ces syst\u00E8mes au cadre des alg\u00E8bres de von Neumann quelconques. Ensuite, on a montr\u00E9 que si le syst\u00E8me de r\u00E9f\u00E9rence est de dimension fini, alors l'existence d'un \u00E9tat asymptotique unique pour la limite de van Hove implique la convergence vers un \u00E9tat asymptotique p\u00E9riodique unique pour le syst\u00E8me de r\u00E9f\u00E9rence, pourvu que le param\u00E8tre de perturbation soit suffisamment petit. De plus, le terme d'ordre z\u00E9ro du d\u00E9veloppement en puissances du param\u00E8tre de perturbation de cet \u00E9tat asymptotique p\u00E9riodique co\u00EFncide avec l'\u00E9tat asymptotique de la limite de van Hove, sauf pour la diff\u00E9rence d'\u00E9chelle temporelle qui doit \u00EAtre prise en compte (donnant lieu \u00E0 la periodicit\u00E9). Ce r\u00E9sultat est important pour la justification physique de l'utilisation du formalisme thermodynamique dans le r\u00E9gime de couplage faible d\u00E9velopp\u00E9 dans [Lebowitz and Spohn, Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs, Adv. Chem. Phys. 38 (1978)]." . "Syst\u00E8mes quantiques d'interactions r\u00E9p\u00E9t\u00E9es, l'approche perturbative" . "Text" . "2009" . . "Syst\u00E8mes quantiques d'interactions r\u00E9p\u00E9t\u00E9es, l'approche perturbative" . . "Groupes quantiques" . . . . . . .